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Abstract with measurement

This paper presents a method for the real— — h(~~) + ~~~~ , v e R~ (2)
ization of non—linear estimators based on spline
interpolation . The difference of a monomial and

The noise sequences are assumed to be independentits interpolating spu m e  forms a monospline and 
Guassjan random vectors with zero mean. If thethen a quadrature formula is induced. When the

knots of the isonospline at which the conditional p,d.f. of the initial State is assumed to be
known , the conditional density function of thedensity ia discretired are allowed to vary, a

class of optimal quadrature formulas is obtained, state, given the observations, can he computed
by the following recursive equations (6)To find the monospline with optimal knots a set

of non—linear algebraic equations must be solved.
If the symmetry property of the monospline is u(~~ I~~)p(~~lY~~1)applied , the order of the non—linear equations 

~~~~~~~~~ 
— 

Ju (~~ T _~
)P(

~~ IYk l )d~~ 
(3)

can be reduced by about one—half. An iteTation
scheme of Newton type is introduced to solve
the monospline. The quadrature formula asso— and
.i:tted w~.th this monospline has the so—called p(

~~
+1fYk) — It (2~+l~~~~~lY k)d~ (4)

poaitivity property which is essential in the 4practical imp lementation of non—linear recur-
sive estimators, where • is filtering density, u is measurementdensity, ~r is transition density and p is pre—

diction density. This paper attempts to approxi—
mate the necessary integrations in (3) and (4)

1. Introduction by using the quadrature formula derived from
inonospline.

Ti4 ~ ~mp)ementation problem for non—linear
estiiaators of the state in a discrete time dyna— 2. Spu me Interpolation, Monosplines
mical system employs a recursive algorithm and Corresponding Ouadrature Formulas

- I arising from Bayes Law. Many numerical ap—
proaches for this implenientation problem have Let s(x) be a snline function of degree
been develeped during the past few years. These 2m—1 with distinct knots x1, x2, . . ., x inninclude curve fitting the conditional density [—1 ,1) and k—fold knots at —1 and 1, where
( 1 ) 1 2 )  and t ie quadrature approximation to the O<k<mcn+2k. Then if a monomial of degree 2m,
ncce . ary integrations (31141151. The essential x~

’m7(~m)~, is interpolated by s(x) in [—1 ,1),
step in outaining the conditional density of the the difference between these two functions be—
state , given the observations, is integration, comes a monoapline

2m
In this paper , a method using quadrature M(x) — ‘~~~-r — s(x)

formulas related to monosplines with optimal
knots is dis~iissed.

~
2in 2ta

— I aConsider a discrete time dynamical system - 
— 
(2m)~ ~~~ 

i ( i — I ) !  —

given by

+ t Rm (1) n (X-~1~ ,
211

~~
1 

(5)— t  8 
_______

__________ ,j — l  ~ (2m—I )~The results presented in this paper were ob-
tained with the partial support of the Air Force

The spu me interpolation assertS thatOffice of Scientific Research under
Grant AFOS R 7S—2 828 . ~~~~~~~~~~~~ ~ f~~~~. rc1~~~~0 ;

• ~~~~.j ~i11 Lou .L
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H(x~) — 0 j—1 , 2, ..., n If the knots are allowed to vary, a set of
optima l knots can he ohtainoi which cause the

F-i, 1 , ..,, k—I (6) ~ ‘a to vanish. This induces so—called optimal
p~operty to the Otiadrature Formulas (9), (8).

— 0 p=O , 1 , , , . ,  rn— k —I 3, Numerical solution for the M000spline
with (Iptiina l Knots

in
,c (m)

Let K(x) — ll
(m)

(X — a (x) (7) SubstitutIng the conditions (6) and (14)
into (5), 2m+2n non—linear algebraic equations

Then the orthogonality property of spline inter— are obtained in the 2m+2n unknowns, {mj}, (8~~)polation Implies that (7] and (x~ }. It can be shown 181 that a symmetry
property of the nonospline can be employed to

~

1 
fK (x)J

2 
minimum (8) reduce the number of equations and unknowns to

—1 rn+n when n is even or m+n+1 when n Is odd , This
eliminates even terms of {Uj).

Since K( X )~~Cm 2
, for any function f(X)CC

m (_1 ,l], T
Let x 1x 1 

x
2 
... x 1 (16)we can employ integration by parts to get — q

J 1 n and i~~ 
(a

1 
5
3 

. . .  a2 1 , 8 1,8 2 4 . . . , 8q ] T ( 1 7)
f(x)dx I A f(x~)

-i j=1
where q=n/2 when n is even or q—n+1/2 when n is
odd . Then the conditions (6) and (14) induce the

+ D
1
f~

1
~~(+i)1 

following equations

1—0
— z(x)  A: (m+q)x(m+q) (18)

ci
+ (_i)mj K(X)f

(m)(X)gZ (~) 
and B(x)~ w(x) B: qx(m-i-q) (10)

— 1

Let TI reOresent all the unknowns
where (A

J
)4 (Br

) and (D
i
) are the coefficients

of the derived quadrature formula which relate fl (2’~)

to K(x) by
(rn—i) 

— ~(m ‘
~~(~~~ ) 8 and combine (18) and (19). We getK

j 1 , 2 11 (10) rA(x)
~~~

— z (
~ )1 — 0  (21)—

B
1 

( 1 ) i+I~~(m-i-1) (1) F-O, 1, . .. ,  k-i (11) The Jacobian of (21) is computed by taking par-
tial derivatives of L(2) with  respect to n.
Since (21) has a unique solution , the inverse of

D
i 

— (_l)
i
K
(mi

~~~ (+i) F-O, 1 , .. ., k-i (12) this Jacobian exists. Partitioning the inverse
Jacobian , we get

K(x) is then a kernel of the derived quadrature
formula which has remainder r~

T
(22 )— Ift~ F

Tj11
m (m)Rf — (—1 )  K (x ) f  (x)dx (13 )

i—i
where A T

: (m4-q)x(m+q) , 8
1
: qx(m+q), E

1
: (n+q) x q

For the case 2<m , O<k<m<2n+2k and (x ) are and Fl: qxq .
double knots, a set of additional cond1tft~n is
induced , Since (18) is linear in y if x is given ,

(21) can be simplified by compu ting v from x.

HI(x~) 0 3 —1 , 2, ..., n (14) Then we got

and (9) has additional term~~~ C3
f’(x

3
) added to [~~

(
~~)J 

(43)

whereits right hand side. 5 is given by

S — K
(m_2 ) (X~~~)_ K (m_2)

(X~ _ ) (15)  &(~
) B(x)A~~~(x)z(x)—w(,:) (;‘ -.)

Then a mod ified Wewton ’s iteratIon equa~ lofl
j 1 , 2 , ..., n (P) can be used to obtain x ,

1306
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2. Alspach , I). L., and H. V. Sorenson , ‘Approx—

i m a ti on  of density function by a sun ofX
y• 

t
k
t
k~.
(
~4~
) (25) 

Gaussian for non—linear Bayesian estimation ,”
Proceedings , Symposium on Non—linear }•stima—

where tk Is a scalar f a c t or  cho~ e~ to m au v e  the t ion Theory , San Diego , 1970.
eor1vergence of the  i ter at i o n  process ,

3. Iiecht , C., “Digital realization of non—linear
< l Ia ( ~ ) J l  (26) filters ,” Proceedi~ 5~~, 2nd Symnosium on Non-

linear Est imat ion  Theory, San D iego , 1971. :~whore k is the Iteration parameter .
4, Kasemratanasunti , W., and R. L. Klein ,4 4. Optimal Q u a d r a t u r e  Formulas “Implementation of non—linear estimators

fo r  Updating Procedure using quadrature formulae ,” Tn t. Journal of - 
-

Control , Vol. 20, 1974.
In order to maintain th e positivity of the

disc re ti zed densi ty f u n c t i o n  in the recursive s. Wang , A. ,  and R. L. Klein, “Optimal Discre—
equations only those quadrature forniulaa with tization and updating for Gaross quadrative
k~0 or k— i and all positive weights are u~ .. fu 1  e s t i m a t o r s , ” Proceedings , 1975 , IEEE Con trol
for the evolution of conditional d en s i ti e s .  The and Decision Con ferenc e , 1975.
optimal quadrature formulas der ived from the
monos pline numerically computed in th~ previous 6. Saga , A ., Optio3l System Control , Pren t ice
sec tion have all positive weights aod require Hall , 1968 .
no derivatives of the integrand . Hence , O.Q.F.’s
are practically useful in non—linear estirnation 7, Prenter , P. M., Splines and Var ia t ion Me thod ,

- - 
problems. John Wiley and Sons , 1975.

Numer ical experiments Indicate that the  8. Schoenberg, I. J., “Monospline and quadra t ive
accuracy of the approximation by 0.Q.F . C8f l  he formula ,” in Theory and Appl ica t ion of Spl ine
improved by increasing in as predicted by theory. Functions , edited by T. N. E. (‘reville ,
However , the O.Q.F. of high m Is m ore sensitive Academic Press, 1969.
to the truncation factor than those of low in.
An 0.Q.F. of low in may give better results if 9. Breydon , C. C., “A class of methods for
the evolving density i~ mul timodal. solving non—linear simultaneous equations ,”

Math. Comp., Vol. 19, 1965.
j  In the realization of the evolution of

cond it io nal densi ties , the concepts of floating
grid and coordinate rotation are emp loyed to
efficien tly represent the density functions (5].

4 The upda t ing algorithm is designed so tha t the
compu tational efficiencies of parallelism can be
exploi ted for real time applications .

5. Conclusion

An approach to problems of non—linear
es timat ion implemen ta tion using quadra turea
which are derived from monosplines with optima l

- 5 knots is given. The quality of the approximation
depends on the degree of monospline , the number
of knots and the truncation factor. The approx—
imatlon error is reduced by efficiently repre—
senting the density function in digital form.

The parameters in the optima l quadra ture
formulas are computed a priori , off lin e ustng
simpliuic ations of non—linear equations which
specify them . Specifically, the separation of
linear and non—linear parameters leads to a
powerful and accurate iteration scheme to
obtain the monospline with optima l knots.
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